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Abstract: Data assimilation for multiple air pollutant concentrations has become an important need
for modeling air quality attainment, human exposure, and related health impacts, especially in China,
which experiences both PM2.5 and O3 pollution. Traditional data assimilation or fusion methods
are mainly focused on individual pollutants and thus cannot support simultaneous assimilation
for both PM2.5 and O3. To fill the gap, this study proposed a novel multipollutant assimilation
method by using an emission-concentration response model (noted as RSM-assimilation). The new
method was successfully applied to assimilate precursors for PM2.5 and O3 in the 28 cities of the
North China Plain (NCP). By adjusting emissions of five pollutants (i.e., NOx, sulfur dioxide = SO2,
ammonia = NH3, VOC, and primary PM2.5) in the 28 cities through RSM-assimilation, the RMSEs
(root mean square errors) of O3 and PM2.5 were reduced by about 35% and 58% from the original
simulations. The RSM-assimilation results in small sensitivity to the number of observation sites
due to the use of prior knowledge of the spatial distribution of emissions; however, the ability to
assimilate concentrations at the edge of the control region is limited. The emission ratios of five
pollutants were simultaneously adjusted during the RSM-assimilation, indicating that the emission
inventory may underestimate NO2 in January, April, and October, and SO2 in April, but overestimate
NH3 in April, and VOC in January and October. Primary PM2.5 emissions were also significantly
underestimated, particularly in April (dust season in NCP). Future work should focus on expanding
the control area and including NH3 observations to improve the RSM-assimilation performance and
emission inventories.
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1. Introduction

Human exposure to air pollutants such as ozone (O3) and fine particulate matter (PM2.5) has
been associated with considerable adverse health effects. In 2017, 2.9 million premature mortalities
were attributed to PM2.5 exposure globally, and about a half-million mortalities were attributed
to O3 exposure [1,2]. Accurate estimation of air pollutant concentrations and their exposures is
critical for assessing health impacts and developing emission control strategies. Previous studies
have demonstrated that the assimilation of monitor observations in the chemical transport model
(CTM) simulations can provide spatiotemporally continuous estimates of air pollutant concentrations
and corresponding exposure while incorporating the accuracy of in-situ monitoring data and the
spatiotemporal continuity of CTM modeling [3]. Traditional data fusion methods, such as Voronoi
neighbor averaging (VNA) [4], enhanced Voronoi neighbor averaging (eVNA) [5], and downscaler
(DS) [6,7] have been applied in many studies to estimate air pollutant concentrations, human exposure,
and related health impacts [8]. Concentration estimates based on fusing monitor and CTM data can be
helpful in characterizing the effects of control strategies for air quality attainment [9].

However, traditional data fusion is mostly based on statistical interpolation or regression methods
that are designed to predict each pollutant individually. The need for simultaneous assimilation of
multiple pollutants is evident with the deterioration of O3 pollution in China, corresponding to PM2.5

improvements [10]. The challenge for multipollutant assimilation is to wisely design certain constraints
to maintain the natural connections between pollutants during the assimilation process. Specifically,
the natural link between O3 and PM2.5 is that both pollutants have contributions from common
precursors (nitrogen oxides = NOx and volatile organic compounds = VOC), similar atmospheric
diffusion/advection transport, and chemical oxidation reactions. Therefore the modulation of one
pollutant concentration should exert corresponding influence on the other, and these connections
should be represented during the assimilation. Traditional data fusion methods like eVNA can
only fuse pollutant concentrations separately without considering multi-pollutant links. However,
separately assimilating O3 and PM2.5 will result in different NOx and VOC adjustment ratios since
the optimization is conducted individually for one pollutant instead of both. The simultaneous
assimilation for both pollutants can result in a consistent adjustment of NOx and VOC emissions and
also provide additional constraints to ensure that the inversion problem is well-posed [11]. Therefore,
the development of an advanced data assimilation method is necessary to support simultaneous data
fusion for multiple pollutants and to accurately represent current air quality and the effectiveness of
future control policies.

Discrepancies between predictions and observations are associated with uncertainties in
many factors such as model emissions, resolution, chemical reaction mechanisms, and process
parameterizations, as well as measurement errors. Among these factors, uncertainties in emission
inventories are regarded as one of the largest contributors to the biases in CTM predictions [3].
Unfortunately, the interpolation-based fusion methods like eVNA do not provide information on the
contributors to model errors. Inversion modeling studies have used advanced assimilation techniques
such as ensemble Kalman filtering to correct the emissions simultaneously during the assimilation
process [12]. The revised emissions are also useful for improving emission inventories [13,14]. Ideally,
the predictions developed by combining CTM simulations and observations would provide not only
accurate and spatiotemporally continuous concentrations of multiple pollutants but also corrections
to emission inventories, which are one of the largest contributors to model biases. To date, however,
most inversion studies only focused on individual pollutants that can be measured directly. Therefore,
there remains a lack of inverse emissions estimates for multiple pollutants, including those that cannot
be directly observed, such as primary fine particulate matter (noted as pPM2.5).

The recently developed response surface model (RSM) provides a real-time prediction of both
PM2.5 and O3 using emission-concentration relationships. The RSM can identify the emission control
factors needed to meet air quality targets and thus provides information on the changes in emissions
of multiple pollutants needed to improve air quality predictions against monitoring data [15,16].
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Advanced machine learning techniques enable its fast application across any time period and spatial
location [17]. Different from inversion modeling, the RSM modifies anthropogenic emissions of
five pollutants at the regionally aggregated level (by city in this study) based on the assumption
that the spatial distribution of emissions is relatively accurate compared to emission magnitudes.
In combination with surface observations from a few monitoring sites, the RSM has been successfully
applied to investigate the emission changes during the COVID-19 period in the North China Plain
(NCP) [3]. The RSM-based assimilation can well maintain the inner links of PM2.5 and O3, as the RSM
prediction can be considered as one CTM simulation under a specific emission scenario. The emission
adjustment ratios from the RSM-assimilation also address the question of how emissions should be
modified to achieve a certain level of agreement between predictions and observations.

In this study, an emission-concentration response modeling framework was established based on
the RSM (noted as RSM-assimilation). Its performance in the data assimilation of ambient concentrations
of multiple air pollutants was then tested in the case study of NCP. The new RSM-assimilation method
is described in Section 2. The performance of the RSM-assimilation approach, as well as the implications
for improving the emission inventory, is discussed in Section 3. Advantages, limitations, and future
work on RSM-assimilation are summarized in Section 4.

2. Methods

2.1. Simulation and Observation Data

The principle of RSM-assimilation is to nudge the CTM simulation toward available observations by
adjusting the emissions. The CTM used in this study was the Community Multiscale Air Quality (CMAQ,
version 5.2.1, www.epa.gov/cmaq) model, and the meteorological fields were based on a simulation with
the Weather Research and Forecasting (WRF, version 3.8) model. The same configuration of WRF-CMAQ
was applied in our previous studies [18]. The Morrison double-moment microphysics scheme [19],
the Rapid Radiative Transfer Model [20], Kain–Fritsch cumulus cloud parameterization [21], Pleim-Xiu
land-surface physics scheme [22], and the Asymmetric Convective Model for the planetary boundary
layer (PBL) physics scheme [23] were used in WRF simulation. We used the Carbon Bond 6 [24] and the
AERO6 aerosol module [25] for gas-phase and particulate matter chemical mechanisms, respectively.

The simulation domain covered the 28 key cities in NCP, as shown in Figure 1. The China
domain with 27 km × 27 km spatial resolution simulations provided the boundary conditions for the
simulation of the nested domain with 9 km × 9 km spatial resolution over NCP. The anthropogenic
emissions of 28 cities were based on the Multi-resolution Emission Inventory for China (MEIC)
dataset for the year 2016 [26] because the data for 2017 was not available when we initiated this
work. The emissions included five major sectors, i.e., industry, power, residential, transportation,
and agriculture. The gridded emissions of five air pollutants over 28 cities in NCP are shown in
Figure S1. Biogenic emissions were generated by the Model for Emissions of Gases and Aerosols from
Nature (MEGAN) version 2.0 [27]. The inline dust model was used to estimate the wind-blown dust
emissions in the China domain with 27 km × 27 km spatial resolution. Considering the wind-blown
dust mostly comes from outside of NCP, we turned off the inline dust model for the simulation over
NCP with 9 km × 9 km spatial resolution to reduce the computational burden associated with the
RSM model development. The performance of the WRF-CMAQ model in simulating meteorological
variables and pollutant concentrations was evaluated by comparing with surface observations [28].
The WRF-CMAQ model well reproduced the observed meteorology, with mean biases within ±0.5◦

for 2-meter temperature, ±1 g/kg for 2-meter humidity, ±0.5 m/s for 10-meter wind speed, and 10◦

for wind direction. The model also exhibited acceptable performance in simulating PM2.5 and O3

concentrations, with slight low-biases in PM2.5 and high-biases in O3. Such biases can be reduced
through the data assimilation with RSM, as discussed in Section 3.1.

www.epa.gov/,DanaInfo=attachments.office.net,SSL+cmaq
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Figure 1. Simulation domain and observation sites in 2 + 26 cities of North China Plain (red dots: 
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CAZ, Cangzhou; HD, Handan; HS, Hengshui; LF, Langfang; SJZ, Shijiazhuang; TS, Tangshan; XT, 

Xingtai; TY, Taiyuan; YQ, Yangquan; ZZ, Zhengzhou; JZ, Jiaozuo; AY, Anyang; HB, Hebi; XX, 

Xinxiang; KF, Kaifeng; PY, Puyang; HZ, Heze; LC, Liaocheng; DZ, Dezhou; JNI, Jining; ZB, Zibo; JNA, 

Jinan; BZ, Binzhou; JC, Jincheng; CHZ, Changzhi). 

The RSM model was developed based on 21 emission-control scenario simulations with the 
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Figure 1. Simulation domain and observation sites in 2 + 26 cities of North China Plain (red dots:
surface monitor sites for NO2, SO2, O3, and PM2.5; the 28 cities are BJ, Beijing; TJ, Tianjin; BD, Baoding;
CAZ, Cangzhou; HD, Handan; HS, Hengshui; LF, Langfang; SJZ, Shijiazhuang; TS, Tangshan; XT,
Xingtai; TY, Taiyuan; YQ, Yangquan; ZZ, Zhengzhou; JZ, Jiaozuo; AY, Anyang; HB, Hebi; XX, Xinxiang;
KF, Kaifeng; PY, Puyang; HZ, Heze; LC, Liaocheng; DZ, Dezhou; JNI, Jining; ZB, Zibo; JNA, Jinan; BZ,
Binzhou; JC, Jincheng; CHZ, Changzhi).

The RSM model was developed based on 21 emission-control scenario simulations with the
WRF-CMAQ model by implementing polynomial functions to represent the response of O3 and PM2.5 to
emission changes of five pollutants including SO2, NOx, VOC, NH3, and pPM2.5 in 28 cities in NCP [14,15].
The polynomial functions of O3 and PM2.5 response to emissions are shown as Equations (1) and (2).

∆PM2.5 = a1E4
NOx + a2E3

NOx + a3E2
NOx + a4ENOx + a5ENOxENH3 + a6E4

NOxEVOCs

+a7E2
NOxEVOCs + a8ENOxEVOCs + a9ESO2 + a10E3

NH3 + a11E2
NH3

+a12ENH3 + a13E2
VOCs + a14EVOCs + a15EpPM2.5

(1)

∆O3 = a1E5
NOx + a2E4

NOx + a3E3
NOx + a4E2

NOx + a5ENOx + a6E5
NOxEVOCs + a7E2

NOxEVOCs

+a8ENOxEVOCs + a9ENOxE3
VOCs + a10ESO2 + a11ENH3 + a12EVOCs

+a13E2
VOCs + a14E3

VOCs + a15EpPM2.5

(2)

where ∆O3 and ∆PM2.5 are the response of O3 and PM2.5 concentrations (i.e., change to the baseline
concentration), respectively, at each simulated grid cell; ENOx, ESO2, ENH3, EVOCs, and EpPM2.5 are
the change ratios of NOx, SO2, NH3, VOCs, and pPM2.5 emissions, respectively, relative to baseline
(i.e., baseline = 0); ai is the coefficient of term I, which is determined by fitting with 21 emission-control
scenario simulations.

The RSM can predict O3 and PM2.5 responses to emission changes in good agreement with CMAQ
predictions, as the out-of-sample validation of RSM predictions against CMAQ simulations yields
NMBs (normalized mean biases) within ±1% [28].

We gathered the observed NO2, SO2, O3, and PM2.5 measurements from monitoring sites in the
28 NCP cities from the China National Environmental Monitoring Centre (http://www.cnemc.cn/en/)
(Figure 1). The daily maximum 8-hour O3 and daily averaged PM2.5 concentrations were assimilated
for the modeling domain with 9-km horizontal grid spacing. The simulation period was January, April,
July, and October, 2017 to represent winter, spring, summer, and fall, respectively. The assimilation
performance was evaluated using the root mean square error (RMSE), normalized mean bias (NMB),
and R-squared (R2).

In the baseline case of RSM-assimilation, we included all observation sites during the assimilation.
To compare with the simulation, we averaged observations from sites within the same model grid cell
(9 km × 9 km). This resulted in about 85 sites (the number is smaller than that shown in Figure 1) across
28 cities to be used in data assimilation. The monitoring sites were mostly located at the urban center of

https://remoteworkplacedr.epa.gov/en/,DanaInfo=www.cnemc.cn+
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each city, where both local emission sources and regional contributions influenced the ambient PM2.5

and O3 concentrations [29,30]. The RSM-assimilation can account for both local formation and regional
transport since it was original built from CMAQ model simulations. Details about the numbers of sites
used for nudging in each city are summarized in Table S1. Additionally, we designed single-site cases for
each of the 28 cities in which only a single randomly-selected site was assimilated for each city. These cases
were used to examine the sensitivity of the RSM-assimilation method to the number of observation sites.

2.2. RSM-Assimilation Framework

Figure 2 presents the framework for the newly developed RSM-assimilation method. As in our
previous study [3], we first estimated the adjusted emission ratios of NOx and SO2 based on the comparison
of simulated and observed NO2 and SO2 concentrations. Next, an optimization process was implemented
that sampled VOC emission ratios as inputs for the RSM-O3 model. This process resulted in optimized
VOC emission ratios for the 28 cities that yielded the best agreement between simulated and observed
O3 concentrations at the monitoring sites (determined by the average RMSE over all the sites). A similar
optimization process was then applied for PM2.5, where the adjusted NOx, SO2, and VOC emission ratios
were introduced into the RSM-PM2.5 model, and emission ratios were sampled for NH3 and pPM2.5 in the
28 cities. Since direct observations of surface NH3 concentrations are unavailable, the optimized pPM2.5

and NH3 emission ratios correspond to the assimilated PM2.5 concentrations that agree most closely with
observed PM2.5 concentrations among all possible combinations of emission ratios. The optimization was
conducted through a multiple looping process to select the best combination of emission ratios (with a small
step of 0.05) for different pollutants and cities to achieve the best overall agreement. As currently designed,
the RSM was suitable for emission ratios of gas pollutants that ranged from 0 (fully controlled emissions) to
2 (doubled emissions). The response functions of O3 and PM2.5 to emission changes of gaseous precursors
were fitted through the regression of multiple emission-control scenario simulations (emission ratios from
0 to 2); thus, the uncertainties of the response functions will be considerably larger when the emissions
vary outside of the 0–2 emission ratio range. Here, we limited the adjusted emission ratios of NO2, SO2,
VOC, and NH3 to a range from 0.1 (90% reduction) to 2.0 (100% increase). We allowed a wider range for
pPM2.5 emission ratios due to the large uncertainties in pPM2.5 emissions, particularly for fugitive emission
sources like wind-blown dust. Unlike the gas pollutants, the RSM had no limits on the adjusted emission
ratios for pPM2.5, since the impacts of these emissions were represented linearly in the RSM [16].
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3. Results

3.1. Performance of RSM-Assimilation

In Figures 3 and 4, the assimilated O3 and PM2.5 concentrations in the baseline RSM-assimilation
case are compared with the original CMAQ simulations in terms of the spatial pattern of monthly
averaged concentrations and with observations in terms of daily paired values for sites in the 28 cities.
The assimilated spatial fields generally maintained the spatial distribution of the original CMAQ
simulation, but have slightly modulated concentrations in areas surrounding the observation sites
that better reflect observed values. The accuracy of both O3 and PM2.5 concentrations was enhanced
through the RSM-assimilation that reduced the RMSE from 12.7–24.4 ppb (pre-assimilation) to
9.9–18.1 ppb (post-assimilation) for O3, and from 23.7–85.3µg·m−3 (pre-assimilation) to 11.8–46.5µg·m−3

(post-assimilation) for PM2.5.
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(a) CMAQ-simulation; (b) Observation; (c) RSM-assimilation; (d) Comparison between CMAQ-
simulation or RSM-assimilation against with obervation (the comparison was done on a monthly basis
for each month of comparison; unit, ppb).

The high biases in simulated O3 were greatly reduced through RSM-assimilation, as the NMBs
decrease from up to 50% in CMAQ to within 20% in RSM-assimilation. The underestimation of
PM2.5 was also mitigated through RSM-assimilation, as the NMBs for PM2.5 were reduced to 0%.
The comparison of daily paired predictions and observations indicated large improvements for R2
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in RSM-assimilation: e.g., the R2 for PM2.5 predictions increased from 0.2–0.5 (pre-assimilation) to
0.7–0.9 (post-assimilation). However, the RSM-assimilation was much more effective for PM2.5 than for
O3. This behavior might be associated with the large contributions to O3 from sources that cannot
be adjusted through RSM assimilation (e.g., biogenic sources) and the effectiveness of primary PM2.5

emissions for modulating PM2.5 concentrations. We note that the observations displayed in Figure 4
are distributed in discrete locations across the domain, and do not necessarily match the location of the
simulated and assimilated concentrations (see Figure S2 for the matched location comparisons).

Time-series comparisons for O3 and PM2.5 in the 28 cities (Figure S3 and S4, respectively) suggest
similar levels of improvement, as the RMSE was reduced after the four-month assimilation across the
28 cities.
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Figure 4. Comparisons of CMAQ-simulated, observed, and RSM-assimilated PM2.5 concentrations
(a) CMAQ-simulation; (b) Observation; (c) RSM-assimilation; (d) Comparison between CMAQ-
simulation or RSM-assimilation against with obervation (the comparison was done on a monthly basis
for each month of comparison; unit, µg·m−3).

Although the RSM-assimilation improved the simulation accuracy, large discrepancies in the
performance improvements were evident among the 28 cities. To further investigate the variation of
RSM-assimilation performance across all observation sites, we compared the RMSEs of CMAQ-simulated
and RSM-assimilated O3 and PM2.5 in the 28 cities at the four-month averaged level, as shown in Figure 5.
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In general, the RSM-assimilation was less effective in reducing the RMSE for sites in cities at the
edge of the control region (i.e., the full 28-city area). The smallest O3 improvements occurred in cities
such as ZB on the eastern edge of the control region and YQ on the western edge of the control region.
These cities had relatively large RMSEs after the assimilation, with RMSE reductions of only 6% (ZB)
and −3% (YQ) (a slightly worse performance) relative to the CMAQ simulation. For the other cities,
the O3 improvements were much greater, with RMSE reductions of at least 16%. For PM2.5, YQ also
had the smallest improvement, with a 24% reduction in RMSE (compared to a 50–80% for the other
cities). Such results indicated that the RSM-assimilation had limited ability to improve the accuracy of
concentrations at the edge of the control region, where the influence of emissions from outside of the
control region was large. Enlarging the control area or combining it with an RSM model based on the
larger domain is recommended to improve the ability of RSM-assimilation for those cities. Meanwhile,
discrepancies also existed within a city, e.g., RMSE was reduced in eastern Tianjin but increased in
western Tianjin in Jan. This behavior occurred because the RSM-assimilation adjusted emissions at
the city averaged level and maintained the spatial distribution of emissions within each city at the
a priori estimate. Future improvement of the spatial distribution of the emission within the city is
also recommended by adopting additional observations like satellites and advanced technologies like
machine-learning to address such limits.
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3.2. Sensitivity of RSM-Assimilation to the Site Number

For traditional model-observation fusion methods, the abundance of observations has significant
impacts on model performance [8]. However, in RSM-assimilation, the adjustment of emissions is
done at the city-level, and therefore decreasing the number of observations within each city should
have relatively less influence on performance compared to regression-based methods. To investigate
the sensitivity of RSM performance to the number of sites used in the assimilation, we examined
performance for cases based on different numbers of observation sites, as shown in Figure 6.
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Figure 6. The performance of RSM-assimilation for O3 (a) and PM2.5 (b) by using a different number of
observation sites.

In assimilation for the baseline case (hollow red bar), all observation sites were used. For the other
cases (C1 to C3, red symbols), a single site in each city was used based on three random site selections.
Compared to the baseline RSM, the performance did not decrease considerably for the single-site
RSM-assimilation cases, C1–C3, especially for PM2.5. When the number of observation sites were
decreased from 85 to 28, the RMSE in O3 predictions increased slightly (by 13%, from 11.5 to 13.3 ppb)
and RMSE in PM2.5 increased slightly (by 42%, from 15.7 to 22.4 µg·m−3) but still decreased by 40% from
that in CMAQ (37.3 µg·m−3) based on the average of all 28 cities. We note that the evaluation for C1–C3
was performed while withholding observations from the sites used for assimilation, thus implying
that such improvement through assimilation also applies to the locations where air pollution is
not monitored.

RSM-assimilation has advantages in cases where few observation data are available. However,
since emissions were adjusted at the city level, the RSM-assimilation method has limited flexibility
for adjusting spatial patterns of O3 and PM2.5 concentrations. The spatial distribution of emissions,



Atmosphere 2020, 11, 1289 10 of 14

which are assumed to be accurate in RSM-assimilation, might also have uncertainties that could
influence the performance of assimilation in terms of representing concentration gradients. In that
case, adjustment of total emissions cannot reduce the biases associated with the spatial concentration
gradients. This could limit the overall performance of RSM-assimilation.

3.3. Implication of Uncertainties in Anthropogenic Emissions

In addition of reducing the RMSE of model predictions, RSM-assimilation provided the emission
ratios for five pollutants that were adjusted simultaneously during assimilation. The adjusted emission
ratios provided information about potential uncertainties in anthropogenic emissions.

As shown in Figure 7, for average month values, NOx emissions appear to be underestimated in the
baseline case based on emission adjustment ratios > 1 in January, April, and October. VOC emissions
appear to be overestimated (adjustment ratios < 1) in January and October, and SO2 emissions are
underestimated in April. The emission adjustment ratio for pPM2.5 was the largest among all pollutants,
in part due to the wider range of possible changes allowed in the RSM-assimilation. The pPM2.5 ratio
was much greater than 1 in all cases and indicated a significant underestimation, particularly in April
during the dust season. The biases in assimilated concentrations generally did not reach zero due to
the limited range of emission adjustment available in RSM-assimilation. For cases that have large
uncertainties in the prior emissions, the simulated concentrations cannot fully be assimilated such that
predictions match the observation.Atmosphere 2020, 11, 1289 11 of 15 
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An underestimation of NOx and SO2 emissions were evident on both clean and polluted days.
On clean days, pPM2.5 emissions were significantly underestimated in April. On polluted days, NOx

emissions are underestimated during all seasons except summer. For all days, VOC emissions were
overestimated in January and October, and SO2 emissions were underestimated in January and April
but overestimated in July and October. The adjusted emission ratio for pPM2.5 was greater than 1 across
all four months suggesting a broad underestimation of primary PM2.5 emissions. The uncertainties
of pPM2.5 emissions may be due to the lack of inline dust simulation over the NCP domain and
underestimation of wind-blown dust emissions outside of NCP [31], as such, underestimation of PM2.5

was more pronounced in April during the dust season. Also, the underestimation of primary organic
aerosol and intermediate VOC emissions appears to have resulted in relatively larger low-biases of
simulated organic aerosols than other components in April (see Figure S5). Although increasing the
pPM2.5 emissions is an efficient way to resolve differences between modeled and observed PM2.5

concentrations, the emission adjustment of pPM2.5 also likely corrects for other model limitations.
The large adjustment of pPM2.5 (by over two) suggests that other model uncertainties (e.g., aerosol-PBL
dynamic interactions, chemical reaction rates, and potential missing chemical reaction pathways) could
also play an important role in contributing to low biases. This is also suggested from the evaluation of
PM2.5 component concentrations, which imply that potential missing chemical reaction pathways for
the transition of S(IV) to S(VI) [32,33] might contribute to the low-biases of sulfate aerosols in January
and July (i.e., SO2 concentration was overestimated but the percentage of sulfate aerosols in total
PM2.5 was underestimated, see Figure S5). Further decoupling the influence of these processes can be
done using advanced machine learning technology with the inclusion of certain feature data such as
meteorological variables.

4. Summary and Conclusions

In this study, we developed a new assimilation method (RSM-assimilation) that used an
emission-concentration response model for assimilating PM2.5 and O3 observations simultaneously.
The successful application of RSM-assimilation indicated that significant improvements in the
agreement of predictions and observations could be achieved solely by adjusting the emissions.
For instance, the RMSE for O3 and PM2.5 predictions decreased by about 35% and 58%, respectively,
demonstrating the effectiveness of the new assimilation method based on the emission-concentration
response model. We found that the RSM-assimilation had limited ability for assimilating concentrations
at the edge of the control region due to the influence of emissions from surrounding regions. Compared
to PM2.5, O3 concentrations were harder to assimilate with the new method due in part to the larger
contributions from background and natural sources. An advantage of RSM-assimilation is that it
requires very little observational data, since it uses prior knowledge of the spatial distribution of
emissions. Therefore the approach is most suitable for cases where few observations are available.

The RSM-assimilation also provides useful information to improve the understanding of
uncertainties in the emission inventory. Based on the adjusted emission ratios, we found that
the NOx emissions are likely underestimated in January, April, and October; SO2 emissions are
likely underestimated in April; NH3 emissions are likely overestimated in April; and VOC emissions
are likely overestimated in January and October. Also, pPM2.5 emissions appear to be significantly
underestimated in April during the dust season. Despite the success of the RSM-assimilation application,
some limitations were identified that require future improvement. For example, due to the lack of
NH3 observations, we adjusted the NH3 emissions simultaneously with pPM2.5 emissions in this
study. Future work can be conducted by implementing both surface measurements and satellite
retrievals (e.g., NO2, SO2, NH3, and HCHO) to optimize the emission accuracy across the whole
domain. The inclusion of NH3 observations can improve the method to better constrain the adjustment
for PM2.5. Further improvement can be also done to separate the emissions by sectors, with additional
correction functions such as the spatial pattern of each emission category based on observations like
satellites. In addition, we assumed that the emission changes have an immediate impact on PM2.5 and
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O3 concentrations, but incorporating an assimilation time window into the method is necessary to
account for the time needed for pollution transport and chemical formation upwind of the monitors.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/11/12/1289/s1,
Table S1: number of sites used for nudging in each city, Figure S1: Spatial distribution of five air pollutants
emissions of 28 cities in NCP (unit, kt·grid−1

·yr−1), Figure S2: Comparisons of CMAQ-simulated, observed,
and RSM-assimilated PM2.5 concentrations in Apr 2017, Figure S3: Comparison of observed, CMAQ-simulated,
and RSM-assimilated O3 concentration, Figure S4: Comparison of observed, CMAQ-simulated and RSM-assimilated
PM2.5 concentration, Figure S5: Comparison of observed and simulated PM2.5 chemical component in a Beijing
urban site (relative percentage in total PM2.5 mass concentration).
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Abbreviations

CMAQ model community multiscale air quality model
CTM chemical transport model
DS downscaler
eVNA enhanced Voronoi neighbor averaging
HCHO formaldehyde
MEGAN model for emissions of gases and aerosols from nature
MEIC multi-resolution emission inventory for China
NCP North China Plain
NH3 ammonia
NMB normalized mean bias
NOx nitrogen oxides
O3 ozone
PBL planetary boundary layer
PM2.5 fine particulate matter
pPM2.5 primary fine particulate matter
R2 R-squared
RMSE root mean square error
RSM response surface model
SO2 sulfur dioxide
VNA Voronoi neighbor averaging
VOC volatile organic compounds
WRF model weather research and forecasting model
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